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Abstract

Side-by-side active air sampling for the organophosphorus (OP) pesticide, chlorpyrifos (CPF) and 

its oxygen analog, chlorpyrifos-oxon (CPF-O) was conducted with two recommended air 

sampling matrices: OSHA Versatile Sampling (OVS) tubes with XAD-2 resin, polyurethane foam 

(PUF) tubes, and passive PUF deposition disks. The study compared the proportion of artificially 

transformed CPF-O in the laboratory and in the field during a tree fruit application in Washington 

State. Lab results demonstrated that the NIOSH-recommended OVS tubes artificially transformed 

up to 32% of CPF to CPF-O during the sampling process, whereas PUF tubes had little to no 

artificial transformation (≤ 0.1%). In the field, the proportion of CPF-O in the sample was 

significantly higher on OVS tubes than on PUF tubes (p < 0.001), confirming that OVS tubes were 

converting a significant portion of CPF to CPF-O. In addition, PUF tubes reported measurable 

levels CPF-O in the field even when no artificial transformation was expected. We conclude that 

the PUF matrix is the superior sampling medium for OP oxygen analogs when compared to 

XAD-2 resin. Community-located PUF tube samples 24 hours post-application had considerably 

higher levels CPF-O (16–21 ng/m3) than near field samples during application (2–14 ng/m3), 

suggesting that the oxygen analog is volatile and formed during atmospheric transport. It is 

recommended that worker and community risk assessments begin to take into consideration the 

presence of the more toxic oxygen analogs when measuring for OP pesticide mixtures.
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1. Introduction

Numerous toxicological studies have examined the relative potency of organophosphorus 

(OP) pesticides and their oxygen analogs in animal models (Chambers and Carr 1993; Costa 

et al. 2005; Cole et al. 2005, 2011). These studies have found the toxicity of the oxon to be 5 

to 100 times as toxic as the parent OP pesticide. This may pose a risk for genetically 

susceptible individuals who have lower levels of the paraoxonase enzyme[PON-1(−/−) 

genotypes]). Paraoxonase plays a critical role in biotransformation of OPs in humans, and 

children have been found to be particularly susceptible to exposures to the oxygen analog 

due to differences in metabolic functioning during development (Costa et al. 2005).

OP pesticides that are used for agricultural applications may persist in the air as primary 

aerosols, be adsorbed onto other particulate matter, or be present in the vapor phase. All of 

these have potential for atmospheric transport and may undergo photolysis or reaction with 

oxidizing agents. Although oxygen analogs are formed in vivo as a metabolic product 

through breakdown mechanisms involving cytochrome p450 enzymes, recent evidence 

demonstrates that they can also be formed in the environment under certain conditions [See 

Figure 1 (Armstrong et al. 2013, Timchalk et al. 2007, CARB 1998)]. Past studies that have 

measured airborne exposures to both OP pesticides and their oxygen analogs have been 

primarily outdoor community studies (CARB 1998, CDPR 2003, CDPR 2006; Fenske et al. 

2009), due to the importance of health risk assessments for young children as a susceptible 

population of concern.

Currently, three established methods for low volume active air monitoring for these 

compounds rely on collection with polyurethane foam (PUF) or XAD-2 resin matrices. 

XAD-4 resins are also used primarily in high volume sampling and not explored in this 

study. Both PUF and XAD-2 matrices have been reviewed and validated for pesticide 

collection by the US EPA Method TO-10A (USEPA 1999) and by ASTM Method D4861 

(ASTM 2011); NIOSH Method 5600 recommends the use of XAD-2 in OSHA Versatile 

Sampling (OVS) tubes (NIOSH 1994). In the past decade, XAD resin sampling matrices 

have become more common in active sampling because the XAD macroreticular beads yield 

larger specific surface area than PUF, allowing the resin to be used in smaller quantities and 

in light-weight air sampling tubes. Low volume OVS tubes containing XAD-2 may be as 

small as 8 mm diameter × 75 mm length (140/270 mg sorbent) in comparison to the more 

common 22 × 100 mm size for PUF tubes (500 mg sorbent) (SKC, Inc.). The difference in 

size is beneficial when considering options for use with personal air sampling pumps 

attached near the breathing zone of research participants. However, little is known about 

how the difference in sampling matrices may affect reported airborne levels of OP pesticides 

or their oxygen analogs.

Concerns regarding the accuracy of sampling results arose after a recent study sampled for 

the common airborne OP pesticide, chlorpyrifos (CPF) and found that in OVS tubes 5 to 

30% of CPF was artifactually converted to chlorpyrifos-oxon (CPF-O), especially at lower 

concentrations (≤ 30 ng/m3) that are typical of previously reported community levels 

(Armstrong et al. 2013, Fenske et al. 2009). Spiked field samples with no air flow did not 

result in this artifact, suggesting that it occurred during the active air sampling process. 
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Previous studies have noted artifactual oxygen analog formation from other OP pesticides 

(e.g. parathion) when actively sampling with XAD resins (Woodrow et al. 1978, Seiber et al. 

1989).

However, none of the three OP pesticide air sampling methods discussed earlier (ASTM, 

EPA and NIOSH) include chemical analysis for the oxygen analogs. This means that results 

from studies using OVS tubes are likely underestimates of actual OP pesticide air 

concentrations. There is little knowledge on the cause of artifact formation, and other 

potential air sampling matrices such as PUF have not been examined for this phenomenon or 

how it affects reported air concentrations.

The primary aim of this research was to evaluate the ability of two traditional sampling 

matrices (PUF and XAD-2 in commercially prepared tubes) to accurately measure air 

concentrations of the OP pesticide CPF and its oxygen analog CPF-O. The experiments 

involved use of spiked laboratory samples and active air samplers exposed to a 

representative range of environmental air concentrations of CPF and CPF-O in the field 

during an application.

A secondary aim of the study was to evaluate the performance of a passive sampling method 

for the OP pesticides. Very few published passive sampling methods for these pesticides 

exist, so we chose to examine the PUF matrix due to its strong adsorptive capacity. XAD-2 

resins were not explored passively due to difficulties arising from the physical disturbance 

of small macroreticular beads. We placed the passive collectors in areas directly near 

applications side by side with the active samples. Passive methods have not been formally 

reviewed by the EPA or ASTM, but past research has identified that deposition may be 

informative for surface area loading 2–4 hours following a pesticide application (Tsai, 

2007). In addition, such passive methods are very low cost and do not require an electricity 

source.

2. Materials and Methods

2.1 Laboratory

Experiments on spiked samples were conducted in a laboratory fume hood according to 

NIOSH method 5600 for OVS tubes (NIOSH, 1994) and EPA Method TO-10A for PUF 

samplers (USEPA 1999). OVS tubes containing XAD-2 sorbent (SKC 226–58) and PUF 

tubes (SKC 226–92) were both spiked with 99.5% analytical grade CPF (ChemService, Inc. 

PS-674) in acetone solution with a 25 μl Hamilton™ positive displacement syringe at levels 

of 0, 40, 60, 200, or 2000 ng. The solution was applied directly to the matrix by inserting the 

needle beyond the quartz fiber pre-filter of XAD-2 resin and directly into the middle section 

of the PUF. Each OVS and PUF tube was immediately connected to an SKC air sampling 

pump (224-PCXR8) operated at a flow rate of two liters per minute (LPM) for 24 hours. 

Both sets of tubes were situated side-by-side in the hood, drawing air at room temperature 

(20–22° C). Sampling pumps were pre- and post-calibrated with a DryCal DC-Lite. Flow 

rates for each were measured and the air volumes (m3) were calculated separately for each 

spiked sample.
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In the same manner, three passive PUF deposition disks (14 cm diameter, 2.5 cm depth, 

Tisch Environmental, TE-1014) were spiked with 0, 25, and 400 ng CPF and laid flat on 

glass petri dishes in a sampling chamber inside the lab hood. Laboratory blanks and storage 

spikes were included in the experiments for quality assurance purposes and to ensure that 

the spike solution was not contaminated with the oxygen analog (CPF-O).

2.2 Field

Twelve pairs of OVS/PUF tubes were co-located near an apple orchard during an air blast 

application of Lorsban® [a typical formulation contains 40–45% CPF active ingredient 

(Dow AgroSciences, 2002)] in Washington State’s Yakima Valley in March 2010. Samples 

were hung side by side on a 1.5 meter (m) air sampling mast (Figure 2). All samplers were 

equipped with calibrated SKC pumps. In order to examine potential transformation to the 

oxygen analog across a range of possible outdoor concentrations, samples were taken near 

and far from the field perimeter. To capture air concentration data representative of higher 

levels, eight pairs of sampling tubes were co-located 6 to 8.5 m from the orchard perimeter 

in the four primary wind directions. Pumps were operated at 6 LPM for 6 hours during 

application. To capture data representative of community air levels, four pairs were co-

located 150 m from the orchard perimeter and operated at 2 LPM for 24 hours immediately 

post-application. This distance was used to represent community exposures because many 

homes, schools, and local businesses were within this range of proximity to orchards in the 

area. The community samples were stationed northwest of the orchard because previous 

wind rose data on prevailing seasonal winds using the Washington State University 

Agricultural Weather Network monitor < 5 km away (AgWeatherNet 2.0), and the orchard 

foreman’s onsite thermo-wind meter readings (Extech® Mini Anemometer) indicated the 

site was upwind. Flow rates were measured and the air volumes were calculated separately 

for each spiked sample. All air sampling pumps were stored in a locked weather-proof 

container.

Twelve glass deposition plates (14 cm diameter) were lined with a PUF matrix (14 cm 

diameter, 2.5 cm depth) and situated 6 m from the orchard perimeter, near the active air 

sampling masts. These samples were stationed in two downwind directions using the same 

data on prevailing seasonal winds and onsite thermo-wind meter readings as for the active 

samples. The plates were laid horizontal at a height of 1 m. To examine the effect of time on 

potential transformation of OP pesticide to its oxon on the matrix, half of the deposition 

plates were removed following the application, and half were removed 6 hours later. Field 

researchers wore personal protective equipment including coveralls, nitrile gloves, boots, 

and goggles upon re-entry to collect the field samples post application.

Meteorological data was obtained during the application and post-application periods using 

a monitor < 5 km from the application site (AgWeatherNet 2.0), and wind roses during the 

sampling period were produced using WRPlot View 7.0 (Lakes Environmental™). All 

samples were stored at the University of Washington field office in Yakima in a freezer at 

−10°C until transported to the University of Washington Environmental Health Laboratory 

in Seattle.
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2.3 Chemical and Statistical Analysis

Chemical analysis was performed for both CPF and CPF-O using LC-MS-MS (Sancho et al. 

2000). All samples were sonicated with an acetone/acetonitrile solution (10 ml) containing 

stable-isotope labeled internal standards of chlorpyrifos diethyl-D10, 99% (Cambridge 

Isotope Labs DLM-4360) and 13C2, 15N-Chlorpyrifos oxon (donated by Dow Agro Sciences 

LLC). Extraction of the larger PUF deposition plates used higher desorption volumes of 

solution (50 ml), resulting in higher compound limits of detection (LOD). The limit of 

detection (LOD) for both CPF and CPF-O was 0.1 ng/sample for both types of active air 

sampling tubes and 1 ng/sample for the PUF deposition plates.

Blanks and quality control spikes were used in the laboratory and field and handled in a 

manner similar to other samples. Spikes were prepared by introducing low levels of 

analytical grade CPF in acetone solution (50 ng) into the middle section of PUF and front 

section of the XAD-2 resin with a 25 μl syringe. Spiked uncapped tubes were arranged in the 

laboratory during the sample period to examine samples with no air actively pulled through 

the tubes. In the field, OVS field blanks yielded no detectable CPF or CPF-O; two PUF tube 

field blanks yielded CPF-O at the detection limit (0.1ng); and one PUF deposition field 

blank yielded CPF at the detection limit (1 ng). Samples were corrected for these blanks. No 

breakthrough was detected on the back up section of the OVS tubes.

GPS coordinates were used to map side by side samplers at perimeter and community site 

locations in the field using GoogleEarth Version 6.2. For both the laboratory and field 

studies, statistical comparisons were made comparing the results on PUF and XAD-2 active 

air matrices using the T Test for paired samples. Similar to previous studies (Armstrong et al 

2013, Fenske et al 2009), we estimated the %CPF-O while adjusting for the difference in 

molecular weight.

3. Results

3.1 Laboratory

As indicated in Table 1, recoveries were lower for OVS tubes (mean 78.5%) than for PUF 

tubes (mean 100.6%) or PUF deposition plates (mean 90.2%) and all recoveries were in the 

acceptable range of 60–120% (EPA, 1999). In spiked OVS tubes 10–15% of CPF was 

converted to CPF-O at higher spike masses, and 32% was converted at the lowest spike 

mass. PUF sampling tubes spiked under the same conditions demonstrated only very small 

amounts artifact formation of CPF-O (0.1%) at spike levels ≥ 2000 ng, and PUF deposition 

plates also yielded no detectable CPF-O formation.

3.2 Field

3.2.1 Perimeter Samples—During the pesticide application, outdoor temperatures 

ranged from 2–14 °C and wind conditions were relatively calm, with northwesterly winds at 

an average speed of 1.3 m/s (wind rose data available in supplementary figures). As 

indicated in Figure 3, measured CPF air concentrations near the orchard ranged from 32 to 

647 ng/m3 on OVS, and 97 to 2,039 ng/m3 on PUF. Overall, the mean CPF concentrations 
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on PUF tubes were significantly greater than the mean concentrations on OVS tubes (p ≤ 

0.001).

Mean air concentrations were strongly influenced by wind patterns. The east and south 

directions perimeter (downwind) reported air concentrations more than four times higher 

than in the north and west (upwind). CPF-O concentrations were 4–22 ng/m3 on OVS and 

2–14 ng/m3 on PUF, with concentrations also higher downwind. The proportion of CPF-O 

to total CPF (%CPF-O) differed dramatically for the two sampling matrices (p ≤ 0.001): 

mean values were only 1–2% on the PUF matrix; mean values ranged from 4–13% on the 

OVS matrix. In both cases, %CPF-O had an inverse relationship to total CPF air 

concentration.

For the PUF deposition samples, mean CPF surface area loadings on the east perimeter were 

higher (50–60 mg/m2) than those placed south of the orchard (30–35 mg/m2), as indicated in 

Figure 4 (p = 0.0001). This was consistent with prevailing wind patterns. CPF-O loadings 

followed a similar pattern. Unlike the active air samples, the %CPF-O on deposition samples 

was very low (0.17–0.36%). There was a small increase in the amount of CPF-O after a 6 

hour delay in time to removal, but this was not statistically significant. However, this 

provided insight regarding the potential aging process of CPF to CPF-O on the deposition 

samples that were left out for longer periods of time. It is worthwhile to note that even these 

low percentages CPF-O still account for considerable mass loadings of CPF-O (ranging 

from 0.04–0.21 mg/m2) near the field.

3.2.2 Community Samples—The 24-hour post application community samplers 

measured CPF air concentrations that ranged from 375 to 660 ng/m3 on the OVS, and 965 to 

1,162 ng/m3 on the PUF, with mean concentrations of 500 and 1,100 ng/m3, respectively. 

Mean concentrations on PUF tubes were significantly greater than concentrations measured 

by OVS tubes (p ≤ 0.001). Although the samples were located further away than the 

perimeter samples and continued 24 hours post application, the measured concentrations 

were within the range of the orchard perimeter concentrations. During the sampling period 

following application, outdoor temperatures ranged from 8–18 °C and wind speed (1.2 m/s) 

was low, but wind direction was more variable than during the spray period and may have 

shifted following application (wind rose data available in supplementary figures).

Concentrations of CPF-O ranged from 50 to 92 ng/m3 on the OVS and 16 to 21 ng/m3 on 

the PUF. Both concentration and %CPF-O were significantly higher on the OVS than PUF, 

despite the fact that OVS reported lower airborne levels of total pesticide (p ≤ 0.001, See 

Figure 2). In addition, all community samples had higher %CPF-O than the orchard 

perimeter samples during application for both matrices (p<0.01).

4. Discussion

4.1 Differences of measured CPF and CPF-O on PUF and XAD-2

These results highlight some of the complexities of measuring airborne pesticide 

concentrations of CPF and CPF-O with accuracy and precision. In the laboratory, very little 

CPF-O was artifactually transformed on the PUF matrix in comparison to XAD-2 resin. 
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There was also no artificial transformation on quality control samples and capped spikes 

without drawn air. This demonstrated that the transformation was occurring during the 

process of pulling air through OVS (XAD-2) resins, but not during the process of pulling air 

through PUF. If researchers are interested in measuring airborne concentrations of both CPF 

and CPF-O, PUF is the superior sampling matrix when compared to XAD-2.

These results were replicated in the field. We found that side-by-side samples of PUF and 

XAD-2 yielded a significant difference in reportable concentrations for both CPF and CPF-

O and assume this partially attributable to the artificial transformation of CPF to CPF-O in 

XAD-2 tubes, but does not entirely explain the phenomenon. A notably smaller difference in 

reported concentrations may be due to direct blow on of particulate to the frontal surface 

areas of OVS and PUF sampling tubes in near field samples. This side-by-side difference in 

the field of measured concentrations is a large concern, given the fact that both methods are 

currently recommended by the EPA (Method TO-10A) (1999) and may strongly influence 

regulatory decision making.

4.2 Environmental CPF-O

Although very little or no CPF-O was artificially transformed on the PUF matrix in the 

laboratory, small concentrations of CPF-O (2–10 ng/m3 in near field samples during 

application and 16 to 21 ng/m3 in community samples post application) were still observed 

on PUF in the field. These experiments confirmed that the CPF-O is likely environmentally 

present in air and should be a concern in health risk assessments. Unlike measured 

concentrations of its parent compound, levels of CPF-O were found to be even higher 24 

hours post application (See Figure 3).

The PUF deposition disks further confirmed that CPF-O was present during the sampling 

period, but proportions collected on particle deposition samplers were less than 1%. There 

was a noticeable difference in %CPF-O on active PUF and passive PUF samplers. We 

hypothesize that this may be due either to the inverse relationship between mass total CPF 

and %CPF-O, or due to a difference in presence of oxygen analogs in the particle and 

gaseous forms of the OP pesticide. Some researchers speculate the oxygen analogs have 

slightly higher vapor pressures than their parent compound, leading to potentially greater 

dispersion and longer half-life in air (Van den Berg et al. 1999). Further tests should 

examine the presence and levels of environmental CPF-O over time, and if these amounts 

differ in particulate vs. vapor.

The 24 hour post application community samples reported concentrations similar to near 

field concentrations at the time of application. This may have been due to the continued 

volatilization, wind erosion, and drift of CPF and CPF-O 24 hours following application 

(Zhou et al 2010). In Figure 3, the community samples report significantly higher 

concentrations CPF-O (ng/m3) and %CPF-O than in the orchard perimeter samples on both 

PUF and OVS tubes. We hypothesize that this may be due to both the chemical aging 

process over time and distance of transport, which allows for atmospheric interactions with 

oxidizing compounds and photolysis. Our findings support previous research by Aston and 

Seiber (1997) that demonstrated increasing CPF-O residues with residence time in air. The 

previous study used a different method including examination of residues on pine tree 
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needles, but also found that sampling locations further from the source of CPF had increased 

oxygen analog ratios in light of lower amounts of measured OP pesticide residues.

4.3 Conclusions

Both the presence of CPF-O and high concentrations of total CPF in these representative 

community samples are a concern when considering potential exposures to humans living in 

nearby residential areas. Future research should employ the PUF sampling matrix in 

residential air monitoring studies, with a focus on the influence of meteorological factors 

(e.g., wind and temperature) on the environmental transformation of OP pesticides to their 

oxygen analogs. It is likely that the formation of oxygen analogs will be of increasing 

importance as climate change produces increased ultraviolet radiation, higher temperatures, 

greater concentrations of oxidizing compounds in the atmosphere (e.g., ozone), and 

additional pesticide applications due to changing pest lifecycles (Boxall et al. 2008).

CPF-O is an important part of the mixture when considering total concentrations of OP 

pesticides, but is often not measured. The failure to account for CPF-O will lead to an 

underestimation of total CPF pesticide concentrations in many cases.

We have found the NIOSH recommended sampling matrix (OVS tubes with XAD-2 resin) 

to artificially transform substantial amounts CPF to CPF-O in both the lab and field; and that 

this leads to inaccuracies in reported levels CPF and CPF-O in field studies. If researchers 

are interested in measuring human exposures to the more potent CPF-O, it may become 

difficult to determine how much is artificially transformed or is environmentally present in 

air if they rely on XAD-2 matrices. Based on these findings, we cannot conclude that PUF is 

superior to XAD resin in all cases; a limitation to this study was that the XAD-4 resins 

commonly used in high volume sampling were not tested. The method of preparing or 

cleaning the resin for sampling may also influence the accuracy of sampling for OP 

pesticides and oxygen analogs. Nevertheless, these findings demonstrate that researchers can 

use the PUF matrix as an alternative to properly quantify exposures to CPF-O in the 

environment.
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Acknowledgments

This work was supported by the NIOSH Educational and Research Centers Program (NIOSH-T42OH00843) and 
the NIEHS/EPA Children’s Environmental Health Centers Program (NEIHS-P01 ES009601, EPA-RD-83451401). 
Resources were also provided by the NIOSH Agricultural Centers Program (NIOSH-2 U50 OH07544). A special 
thanks to Dow Agro Sciences LLC, for supplying the internal standard for analysis of CPF-O and to Professor 
Michael Morgan at the University of Washington for his input regarding the air sampling results.

Abbreviations

CPF Chlorpyrifos

CPF-O Chlorpyrifos-Oxon

Armstrong et al. Page 8

Chemosphere. Author manuscript; available in PMC 2014 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LPM Liters per Minute

LOD Limit of Detection

OP Organophosphorus

OVS OSHA Versatile Sampler

PUF Polyurethane Foam
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• XAD-2 matrices artificially transform OPs to oxygen analogs during air 

sampling.

• PUF matrices are the superior method for air sampling OP/oxygen analog 

mixtures.

• Higher levels of more potent oxygen analogs are detected in air post-application.

• Higher concentrations oxygen analogs are detected farther distance from the 

source.

• Larger % OP oxygen analogs are identified in vapors than deposited particulate.
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Figure 1. 
Recent evidence demonstrates that CPF may undergo photolysis or reaction with oxidizing 

agents during atmospheric transport in the environment.
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Figure 2. Side by side collection PUF and OVS sampling matrices
Samples were co-located, hung from sampling masts, and wrapped with aluminum foil to 

reduce potential reactions with UV light. Flow rates were recorded using rotameters.
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Figure 3. Side-by-side PUF and OVS Comparison
of near field CPF and CPF-O sampling (orchard perimeter) during an application (6 hour 

sampling period) and far field sampling (community) post application (24 hour sampling 

period). Bars and whiskers represent mean and standard deviation values, respectively.
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Figure 4. Mass loading (mg/m2) for chlorpyrifos (CPF) and chlorpyrifos-oxon (CPF-O)
Particle deposition sampling after removal upon re-entry 2 hours later and an extended 6 

hours later, near the orchard perimeter. Bars and whiskers represent mean and standard 

deviation values, respectively.
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